当前位置: X-MOL 学术Mind › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Logic of Dynamical Systems Is Relevant
Mind ( IF 1.8 ) Pub Date : 2025-05-28 , DOI: 10.1093/mind/fzaf012
Levin Hornischer, Francesco Berto

Lots of things are usefully modelled in science as dynamical systems: growing populations, flocking birds, engineering apparatus, cognitive agents, distant galaxies, Turing machines, neural networks. We argue that relevant logic is ideal for reasoning about dynamical systems, including interactions with the system through perturbations. Thus dynamical systems provide a new applied interpretation of the abstract Routley-Meyer semantics for relevant logic: the worlds in the model are the states of the system, while the (in)famous ternary relation is a combination of perturbation and evolution in the system. Conversely, the logic of the relevant conditional provides sound and complete laws of dynamical systems.

中文翻译:

动力学系统的逻辑是相关的

在科学中,很多事物都被有效地建模为动态系统:不断增长的人口、成群结队的鸟类、工程设备、认知代理、遥远的星系、图灵机、神经网络。我们认为,相关逻辑非常适合推理动力学系统,包括通过扰动与系统的交互。因此,动力系统为相关逻辑的抽象 Routley-Meyer 语义提供了新的应用解释:模型中的世界是系统的状态,而(臭名昭著的)三元关系是系统中扰动和进化的组合。相反,相关条件的逻辑提供了健全而完整的动力系统定律。
更新日期:2025-05-28
down
wechat
bug