当前位置:
X-MOL 学术
›
J. Hazard. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ultra-low Cu(I) loading achieving ultra-high fouling-resistance and decontamination performance in a self-cleaning Cu2O/Ti3C2Tx@PVDF catalytic membrane integrated system
Journal of Hazardous Materials ( IF 12.2 ) Pub Date : 2025-06-02 , DOI: 10.1016/j.jhazmat.2025.138817
Chao Xie, Pengyu Zhang, Yi Hu, Dandan Yang, Yahui Li, Yulian Li, Jiandong Lu, Zijian Wu, Junyong He, Peidong Hong, Lingtao Kong
Journal of Hazardous Materials ( IF 12.2 ) Pub Date : 2025-06-02 , DOI: 10.1016/j.jhazmat.2025.138817
Chao Xie, Pengyu Zhang, Yi Hu, Dandan Yang, Yahui Li, Yulian Li, Jiandong Lu, Zijian Wu, Junyong He, Peidong Hong, Lingtao Kong
![]() |
Engineering a catalytic and hydrophilic membrane integrated system holds significant environmental implications for fouling-resistant and efficient water purification. The heterojunction Cu2O/Ti3C2Tx was successfully synthesized by leveraging the specific interactions between the terminal active groups of MXene and Cu2O, effectively addressing the limitations of the catalytic membrane’s performance due to low-dose doping, and enhancing its catalytic activity and hydrophilicity. Here we report a ultra-low Cu(I) loading that achieves ultra-high fouling-resistance and decontamination performance in a self-cleaning Cu2O/Ti3C2Tx@PVDF catalytic membrane integrated system. The representative membrane incorporating 1.0 wt% of Cu2O/Ti3C2Tx (denoted as M-1.0) as a PMS activator demonstrated the successful performance of long-lasting antifouling and sustainable decontamination across a wide pH range in complex water matrices. The intrinsic Cu(I)/Cu(II) redox cycles was found to be crucial for driving PMS activation and oxidative conversion. Moreover, the Cu2O/Ti3C2Tx-functionalized membrane demonstrated enhanced hydrophilicity and fouling-resistance compared to the pristine PVDF membrane. We further investigate the transformation and ecotoxicity of tetrabromobisphenol A and its intermediates within the M-1.0/PMS membrane system, providing valuable insights into the evolutionary dynamics of TBBPA. This work offers innovative perspectives for advancing environmental purification, membrane self-cleaning, and resources utilization technologies.
中文翻译:
超低 Cu(I) 负载量,在自清洁 Cu2O/Ti3C2Tx@PVDF 催化膜集成系统中实现超高的抗污染性和去污性能
设计催化亲水膜集成系统对防污和高效净化水具有重大的环境影响。利用 MXene 和 Cu2O 末端活性基团之间的特异性相互作用,成功合成了异质结 Cu2O/Ti3C2Tx,有效解决了低剂量掺杂对催化膜性能的限制,增强了其催化活性和亲水性。在这里,我们报告了一种超低的 Cu(I) 负载,可在自清洁 Cu2O/Ti3C2Tx@PVDF 催化膜集成系统中实现超高的抗污染性和去污性能。含有 1.0 wt% Cu2O/Ti3C2Tx(记为 M-1.0)作为 PMS 活化剂的代表性膜证明了在复杂水基质中较宽的 pH 值范围内实现持久防污和可持续净化的成功性能。发现内禀的 Cu(I)/Cu(II) 氧化还原循环对于驱动 PMS 激活和氧化转化至关重要。此外,与原始 PVDF 膜相比,Cu2O/Ti3C2Tx 功能化膜表现出更强的亲水性和抗污染性。我们进一步研究了四溴双酚 A 及其中间体在 M-1.0/PMS 膜系统中的转化和生态毒性,为 TBBPA 的进化动力学提供了有价值的见解。这项工作为推进环境净化、膜自清洁和资源利用技术提供了创新视角。
更新日期:2025-06-04
中文翻译:

超低 Cu(I) 负载量,在自清洁 Cu2O/Ti3C2Tx@PVDF 催化膜集成系统中实现超高的抗污染性和去污性能
设计催化亲水膜集成系统对防污和高效净化水具有重大的环境影响。利用 MXene 和 Cu2O 末端活性基团之间的特异性相互作用,成功合成了异质结 Cu2O/Ti3C2Tx,有效解决了低剂量掺杂对催化膜性能的限制,增强了其催化活性和亲水性。在这里,我们报告了一种超低的 Cu(I) 负载,可在自清洁 Cu2O/Ti3C2Tx@PVDF 催化膜集成系统中实现超高的抗污染性和去污性能。含有 1.0 wt% Cu2O/Ti3C2Tx(记为 M-1.0)作为 PMS 活化剂的代表性膜证明了在复杂水基质中较宽的 pH 值范围内实现持久防污和可持续净化的成功性能。发现内禀的 Cu(I)/Cu(II) 氧化还原循环对于驱动 PMS 激活和氧化转化至关重要。此外,与原始 PVDF 膜相比,Cu2O/Ti3C2Tx 功能化膜表现出更强的亲水性和抗污染性。我们进一步研究了四溴双酚 A 及其中间体在 M-1.0/PMS 膜系统中的转化和生态毒性,为 TBBPA 的进化动力学提供了有价值的见解。这项工作为推进环境净化、膜自清洁和资源利用技术提供了创新视角。