当前位置: X-MOL 学术J. Mater. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tri-site co-doping NASICON-type Na0.97K0.03Ti1.95Al0.05(PO4)2.95(SiO4)0.05/C with enhanced rate performance and cycling stability
Journal of Materials Science & Technology ( IF 11.2 ) Pub Date : 2025-06-04 , DOI: 10.1016/j.jmst.2025.03.108
Mengran Zhao, Wenjing Du, Xuan Wang, Wenyao Li, Cheng Yang, Yu Liu

NaTi2(PO4)3 (NTP), a representative sodium superionic conductor (NASICON) material, has emerged as a promising anode for sodium-ion batteries owing to its three-dimensional open framework and exceptional structural stability. However, limited electronic conductivity severely restricts its rate capability, particularly under high current density. We propose a triple-site co-doping strategy that synergistically modifies NTP through K+, Al3+, and SiO44− incorporation, achieving simultaneous optimization of ionic transport and structural stability. The optimized Na0.97K0.03Ti1.95Al0.05(PO4)2.95(SiO4)0.05/C (NTP-KAS) delivers 129.3 mAh g−1 at 10 mA g−1, demonstrating a 17.2% enhancement in capacity compared to pristine NTP, and approaching the theoretical specific capacity. After 3000 cycles at 1.0 A g−1, NTP-KAS maintains 92.27% capacity retention (vs. 74.58% for pristine NTP), corresponding to an ultralow decay rate of 0.0026% per cycle. This atomic-scale multi-ion engineering strategy establishes new design principles for developing durable sodium-ion batteries.

中文翻译:

三位点共掺杂 NASICON 型 Na0.97K0.03Ti1.95Al0.05(PO4)2.95(SiO4)0.05/C,具有增强的倍率性能和循环稳定性

NaTi 2 (PO 43 (NTP) 是一种具有代表性的钠超离子导体 (NASICON) 材料,由于其三维开放框架和卓越的结构稳定性,已成为一种很有前途的钠离子电池负极。然而,有限的电子电导率严重限制了其倍率能力,尤其是在高电流密度下。我们提出了一种三位点共掺杂策略,通过 K + 、 Al 3+ 和 SiO 4 4− 的掺入协同修饰 NTP,实现离子传输和结构稳定性的同步优化。优化的 Na 0.97 K 0.03 Ti 1.95 Al 0.05 (PO 42.95 (SiO 40.05 /C (NTP-KAS) 在 10 mA g −1 时提供 129.3 mAh g −1 ,与原始 NTP 相比,容量提高了 17.2%,接近理论比容量。在 1.0 A g −1 下循环 3000 次后,NTP-KAS 仍保持 92.27% 的容量保留率(原始 NTP 为 74.58%),相当于每个循环 0.0026% 的超低衰减率。这种原子级多离子工程策略为开发耐用的钠离子电池建立了新的设计原则。
更新日期:2025-06-04
down
wechat
bug