当前位置:
X-MOL 学术
›
J. Alloys Compd.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enhanced microwave absorption in 2D layered titanium carbide-based heterostructures developed through annealing of MXene sheets
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2025-06-03 , DOI: 10.1016/j.jallcom.2025.181399
Tong Liu, Yanpeng Mu, Xin Geng, Shuguang Han, Shifeng Huang
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2025-06-03 , DOI: 10.1016/j.jallcom.2025.181399
Tong Liu, Yanpeng Mu, Xin Geng, Shuguang Han, Shifeng Huang
![]() |
This study investigates the thermal decomposition mechanisms and kinetics of MXene (Ti3C2Tx) sheets in an inert atmosphere, with the aim of developing two-dimensional multilayered titanium carbide-based heterojunctions. Significant phase transformations occur within the temperature range of 400 oC to 1400 oC. The thermal process facilitates the formation of heterostructured nanocomposites in a sequence that follows the annealing temperature: the uniform decoration of MXene sheets with anatase (TiO₂) nanoparticles, followed by the growth of rutile particles embedded in the MXene sheets, and ultimately leading to the formation of TiₓC/carbon hybrids. These novel heterostructures and tunable chemical compositions, not only effectively tune the impedance matching and interfacial polarization, but also introduce efficient dielectric loss mechanisms. As a result, their microwave absorption capabilities are significantly enhanced. The minimum reflection loss (RLmin) value reaches -55.05 dB at 5.6 GHz for the multilayered TiCx/carbon hybrids, and the effective bandwidth (EAB) expands to 3.76 GHz at a thickness of 1.4 mm. Herein, this straightforward thermal annealing process offers a promising strategy for the design and construction of titanium carbide-based heterostructures, demonstrating considerable potential for electromagnetic wave absorption applications.
中文翻译:
通过 MXene 板退火开发的基于 2D 层状碳化钛的异质结构中的微波吸收增强
本研究研究了 MXene (Ti 3 C 2 T x ) 片材在惰性气氛中的热分解机理和动力学,旨在开发二维多层碳化钛基异质结。在 400 o C 至 1400 o C 的温度范围内会发生明显的相变。热过程有助于按照退火温度的顺序形成异质结构纳米复合材料:用锐钛矿 (TiO₂) 纳米颗粒均匀装饰 MXene 片材,然后嵌入 MXene 片材中的金红石颗粒生长,最终导致 TiₓC/碳杂化物的形成。这些新颖的异质结构和可调的化学成分不仅有效地调节了阻抗匹配和界面极化,而且还引入了高效的介电损耗机制。因此,它们的微波吸收能力得到了显著增强。多层 TiC x /碳混合材料在 5.6 GHz 时最小反射损耗 (RL min ) 值达到 -55.05 dB,在 1.4 mm 厚度处有效带宽 (EAB) 扩展到 3.76 GHz。在此,这种简单的热退火工艺为基于碳化钛的异质结构的设计和构建提供了一种有前途的策略,在电磁波吸收应用中显示出相当大的潜力。
更新日期:2025-06-04
中文翻译:

通过 MXene 板退火开发的基于 2D 层状碳化钛的异质结构中的微波吸收增强
本研究研究了 MXene (Ti 3 C 2 T x ) 片材在惰性气氛中的热分解机理和动力学,旨在开发二维多层碳化钛基异质结。在 400 o C 至 1400 o C 的温度范围内会发生明显的相变。热过程有助于按照退火温度的顺序形成异质结构纳米复合材料:用锐钛矿 (TiO₂) 纳米颗粒均匀装饰 MXene 片材,然后嵌入 MXene 片材中的金红石颗粒生长,最终导致 TiₓC/碳杂化物的形成。这些新颖的异质结构和可调的化学成分不仅有效地调节了阻抗匹配和界面极化,而且还引入了高效的介电损耗机制。因此,它们的微波吸收能力得到了显著增强。多层 TiC x /碳混合材料在 5.6 GHz 时最小反射损耗 (RL min ) 值达到 -55.05 dB,在 1.4 mm 厚度处有效带宽 (EAB) 扩展到 3.76 GHz。在此,这种简单的热退火工艺为基于碳化钛的异质结构的设计和构建提供了一种有前途的策略,在电磁波吸收应用中显示出相当大的潜力。