当前位置:
X-MOL 学术
›
Ind. Eng. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Joule Heating-Driven Flow-Through SiC Catalytic Membrane Microreactor for Hydrogen Production from Methanol Steam Reforming
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2025-06-04 , DOI: 10.1021/acs.iecr.5c01156
Huiyun Huang, Shengchi Bai, Bailin Zhao, Ke Bai, Jingyun Liu, Zeyi Xiao, Senqing Fan
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2025-06-04 , DOI: 10.1021/acs.iecr.5c01156
Huiyun Huang, Shengchi Bai, Bailin Zhao, Ke Bai, Jingyun Liu, Zeyi Xiao, Senqing Fan
![]() |
A compact and energy-efficient reactor system is essential for advancing hydrogen production technologies based on methanol steam reforming (MSR). However, conventional fixed-bed or externally heated microreactors often suffer from low catalyst utilization, significant heat losses, and poor scalability. In this study, we present a novel flow-through catalytic membrane reactor (CMR) powered by Joule heating in which Cu/ZnO/Al2O3 nanoparticles are immobilized in situ within the microscale pores of a high-thermal-conductivity SiC membrane tube. The system integrates evaporation and reforming zones into a single tube and enables direct internal heating of the catalytic region, minimizing thermal losses and enhancing energy efficiency. Under optimal conditions (300 °C, S/C = 1.5, methanol flow rate = 0.01835 mol min–1), the reactor achieved a methanol conversion of 97.55%, a hydrogen volumetric productivity of 157.96 kmol m–3 h–1, and an energy efficiency of 98.61% in the scaled-up design, outperforming conventional porous or foam-supported microreactors. Additionally, the reactor volume required to produce 500 Nm3 H2 h–1 was only about 2 m3, nearly 1 order of magnitude smaller than that of traditional systems. These results demonstrate that the integration of flow-through architecture, catalyst pore confinement, and Joule heating represents a significant advancement in compact, high-efficiency MSR hydrogen production.
中文翻译:
焦耳热驱动流通式 SiC 催化膜微反应器用于甲醇蒸汽重整制氢
紧凑且节能的反应器系统对于推进基于甲醇蒸汽重整 (MSR) 的制氢技术至关重要。然而,传统的固定床或外部加热的微反应器通常存在催化剂利用率低、热损失大和可扩展性差等问题。在这项研究中,我们提出了一种由焦耳热提供动力的新型流通式催化膜反应器 (CMR),其中 Cu/ZnO/Al2O3 纳米颗粒被原位固定在高导热 SiC 膜管的微孔内。该系统将蒸发区和重整区集成到一根管中,并能够直接对催化区域进行内部加热,从而最大限度地减少热损失并提高能源效率。在最佳条件下(300 °C,S/C = 1.5,甲醇流速 = 0.01835 mol min–1),反应器实现了 97.55% 的甲醇转化率、157.96 kmol m–3 h–1 的氢气体积生产率和 98.61% 的能源效率,优于传统的多孔或泡沫支撑微反应器。此外,生产 500 Nm3 H2 h-1 的反应器体积仅为约 2 m3,比传统系统小近 1 个数量级。这些结果表明,流通式结构、催化剂孔隙限制和焦耳热的集成代表了紧凑、高效 MSR 制氢的重大进步。
更新日期:2025-06-04
中文翻译:

焦耳热驱动流通式 SiC 催化膜微反应器用于甲醇蒸汽重整制氢
紧凑且节能的反应器系统对于推进基于甲醇蒸汽重整 (MSR) 的制氢技术至关重要。然而,传统的固定床或外部加热的微反应器通常存在催化剂利用率低、热损失大和可扩展性差等问题。在这项研究中,我们提出了一种由焦耳热提供动力的新型流通式催化膜反应器 (CMR),其中 Cu/ZnO/Al2O3 纳米颗粒被原位固定在高导热 SiC 膜管的微孔内。该系统将蒸发区和重整区集成到一根管中,并能够直接对催化区域进行内部加热,从而最大限度地减少热损失并提高能源效率。在最佳条件下(300 °C,S/C = 1.5,甲醇流速 = 0.01835 mol min–1),反应器实现了 97.55% 的甲醇转化率、157.96 kmol m–3 h–1 的氢气体积生产率和 98.61% 的能源效率,优于传统的多孔或泡沫支撑微反应器。此外,生产 500 Nm3 H2 h-1 的反应器体积仅为约 2 m3,比传统系统小近 1 个数量级。这些结果表明,流通式结构、催化剂孔隙限制和焦耳热的集成代表了紧凑、高效 MSR 制氢的重大进步。